Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer.
نویسندگان
چکیده
Excitatory synaptic activity can evoke transient and substantial elevations of postsynaptic calcium. Downstream effects of elevated calcium include the activation of the calcium-dependent protease calpain. We have developed a reagent that identifies dendritic spines in which calpain has been activated. A fusion protein was expressed that contained enhanced yellow and enhanced cyan fluorescent protein (EYFP and ECFP, respectively) linked by a peptide that included the micro-calpain cleavage site from alpha-spectrin. A PDZ-binding site fused to ECFP anchored this protein to postsynaptic densities. The fusion protein exhibited fluorescence resonance energy transfer (FRET), and diminution of FRET by proteolysis was used to localize calpain activity in situ by fluorescence microscopy. Incubation of the fusion protein with calpain in the presence of calcium resulted in the separation of EYFP and ECFP into monomeric fluorophores. In transiently transfected cell lines and dissociated hippocampal neurons, FRET was diminished by raising intracellular calcium levels with an ionophore or with glutamatergic agonists. Calpain inhibitors blocked these changes. Under control conditions, FRET levels in different dendritic spines of cultured neurons and in hippocampal slices were heterogeneous but showed robust decreases upon treatment with glutamatergic agonists. Immunostaining of cultured neurons with antibodies to a spectrin epitope produced by calpain-mediated digestion revealed an inverse correlation between the amount of FRET present at postsynaptic elements and the concentration of spectrin breakdown products. These results suggest that the FRET methodology identifies sites of synaptically induced calpain activity and that it may be useful in analyzing synapses undergoing changes in efficacy.
منابع مشابه
FRET-FLIM Investigation of PSD95-NMDA Receptor Interaction in Dendritic Spines; Control by Calpain, CaMKII and Src Family Kinase
Little is known about the changes in protein interactions inside synapses during synaptic remodeling, as their live monitoring in spines has been limited. We used a FRET-FLIM approach in developing cultured rat hippocampal neurons expressing fluorescently tagged NMDA receptor (NMDAR) and PSD95, two essential proteins in synaptic plasticity, to examine the regulation of their interaction. NMDAR ...
متن کامل17-Beta-estradiol increases neuronal excitability through MAP kinase-induced calpain activation.
17-Beta-estradiol (E2) is a steroid hormone involved in numerous brain functions. E2 regulates synaptic plasticity in part by enhancing NMDA receptor function and spine density in the hippocampus, resulting in increased long-term potentiation and facilitation of learning and memory. As the calcium-dependent neutral protease, calpain, is also involved in these processes, we tested whether E2 cou...
متن کاملBrain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation.
Calpain is a calcium-dependent protease that plays a significant role in synaptic plasticity, cell motility, and neurodegeneration. Two major calpain isoforms are present in brain, with mu-calpain (calpain1) requiring micromolar calcium concentrations for activation and m-calpain (calpain2) needing millimolar concentrations. Recent studies in fibroblasts indicate that epidermal growth factor (E...
متن کاملNeurofibromin is the major ras inactivator in dendritic spines.
In dendritic spines, Ras plays a critical role in synaptic plasticity but its regulation mechanism is not fully understood. Here, using a fluorescence resonance energy transfer/fluorescence lifetime imaging microscopy-based Ras imaging technique in combination with 2-photon glutamate uncaging, we show that neurofibromin, in which loss-of-function mutations cause Neurofibromatosis Type 1 (NF1), ...
متن کاملSignalling pathways underlying structural plasticity of dendritic spines
Synaptic plasticity, or changes in synaptic strength, is thought to underlie learning and memory. Imaging studies, mainly in brain slices, have revealed that long-term synaptic plasticity of excitatory synapses in hippocampal neurons is coupled with structural plasticity of dendritic spines, which is thought to be essential for inducing and regulating functional plasticity. Using pharmacologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2000